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The problem of wave generation by sources near the ocean surface is examined. The 
model is used to deduce that in the ocean, at low frequencies, both sound and surface 
gravity waves are possibly induced by the same sources. Sound radiation from 
particular sources is significantly influenced, at low frequencies, by surface waves 
which themselves are almost unmodified by fluid compressibility. The wave fields 
and energy levels are calculated analytically in a simple model of point-source 
excitation, which reveals considerable character. The theory is used to interpret 
measurements from the real ocean in the case where the source is a finite distribution 
of surface pressure fluctuations caused by winds. Good consistency is found in both 
structure and order of magnitude. Our main conclusions are that surface waves and 
wave-related sound are not necessarily cause and effect ; a considerable proportion 
of the wave-associated underwater sound in the ocean is very likely generated by the 
same sources that produced the surface waves themselves. 

1. Introduction 
Waves on the ocean surface are known to be related to the structure of underwater 

sound. On the one hand, they can be sources of sound; surface waves may interact 
with each other to energize the sound field. This mechanism, involving nonlinear 
motions of the sea surface, has received much attention during the past two decades 
(e.g. Brekhovskikh 1966). On the other hand, sound and surface waves might possibly 
be inter-related because a source near the surface exeites both kinds of waves. Should 
they originate from the same source it would be their common origin that gives their 
correlation; it is not one of cause and effect. This paper examines the detailed linear 
inter-connection between sound and surface waves. 

Our problem is formulated in a strictly linear theory. The governing equation and 
boundary conditions are derived by taking into account both gravitational effects 
and fluid compressibility, and assuming the BruntiVaisala frequency to be zero so 
that internal gravity waves are precluded. 

We start with an idealized problem in which a harmonic point source is assumed 
beneath the ocean surface. The response of the ocean to such an excitation is sought 
analytically. The results show that both sound and surface waves are induced. In this 
particular model, compressive waves and surface waves naturally coexist. Surface 
waves, propagating horizontally and decaying exponentially with depth, are unaffec- 
ted by the compressibility of water. The dispersion relation is identical to that in 
classic wateI-wave theory (Lamb 1932) and surface waves travel at exactly the same 
speed as they did in incompressible flow. As for sound waves, the situation is quite 
different. A t  high frequencies, sound and surface waves are essentially decoupled ; 
ocean-sound problems can then be solved separately from hydrodynamic problems 
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(cf. Lighthill 1978). However, sound radiation from a near-surface source can be 
significantly altered, at low frequencies, by gravity waves on the surface. Without 
gravity, the constant-pressure free surface would have a reflection coefficient of - 1 ; 
sound from the primary source is augmented by that from its negative image. 
However, gravity changes all that. Sound waves from the real source are reflected 
by coherent surface waves. Therefore, although still remaining pressure-release, the 
ocean surface reflects sound waves as if it  had a reflective property that is a function 
of both frequency and observation position. 

We also examine the energetics of this statically stratified model. It can be 
converted into a uniform mean-density model through an analogous velocity 
potential. The mean energy flux can then be calculated, in terms of this analogous 
velocity potential, in the same way as in gravity-free situations. We will show that 
the response of the ocean to the source is in two parts, one a wavelike motion that 
transports energy and the other a vertical background oscillation. The latter makes 
no contribution to the mean wave power output. Energy radiated from the point 
source to sound and surface waves is calculated explicitly. We we& intrigued to find 
that the total acoustic power from the point source may be vanishingly small when 
the source is positioned at a particular depth in water. This is a striking feature that 
would never occur in gravity-free problems, and is entirely due to the change of 
reflective properties of the water surface, which provides an extra ‘image’ field that 
interferes destructively with the original one. The power calculations also show that 
deep water sources are more efficient in generating sound than producing surface 
waves, while sources in the proximity of the surface radiate more energy to surface 
waves than to sound. 

Pressure fluctuations caused by winds moving across the ocean surface play a 
dominant role in the production of surface waves (Phillips 1977). We think that their 
direct effect on sound generation has not been adequately addressed, though Isakvich 
& Kur ’yanov (1970) have recognized the possibility that the wind-associated pressure 
fluctuations are responsible for the underwater noise in the frequency range 10-50 Hz. 
We will examine this aspect in detail here and show that surface pressures can also 
generate an appreciable component of the low-frequency ocean sound below 10 Hz. 
We calculate the sound and surface wave power radiated from a finite distribution 
of sources prescribed on the surface. Our model of the wind-induced pressure is 
modelled from experiments. It is found that the calculated power ratio of the two 
kinds of waves agrees well with measurements in both the structure of frequency 
dependence and the order of magnitude. This then leads us to advocate the view that 
underwater sound and surface waves are probably linearly interconnected. By this, 
we mean that the underwater sound is a linear functional of the surface wave field. 
If the source were a surface pressure field, then a doubling of the surface pressure 
(keeping the space and time characteristics constant) would double the strength of 
both the underwater sound and the surface waves. This is contrary to the alternative 
view that surface waves themselves ‘generate’ the sound and do so by a nonlinear 
mechanism (Brekhovskikh 1966). A doubling of the surface wave activity in that 
event implies a quadrupling of the acoustic field. The experimental observation, that 
sound and surface waves increase by the same amount due to the increase of wind, 
indicates that a considerable proportion of the wave-related underwater noise is very 
likely generated by the same sources that produced the surface waves. 
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2. Waves induced by a harmonic point source 
To bring out explicitly the linear connection between sound and surface waves, we 

consider here an idealized rxodel of a statically stratified ocean under an infinite free 
surface, beneath which a harmonic point source is positioned at ( O , O ,  -h ) ,  h being 
positive. Axes are selected so that the undisturbed water surface lies in y3 = 0; water 
occupies y3 < 0, and pressure above the water surface is assumed constant. The ocean 
water is supposed to be inviscid and originally at rest. The problem may then be 
formulated in terms of the velocity potential +(y, 7 ) .  Furthermore, we suppose the 
entropy per unit mass to be uniform, which allows the use of p‘ = ckp’ as the 
definition of the constant sound speed c,, p’ and p‘ respectively representing pressure 
and density fluctuations in water. 

The equations of motion are linearized and a source is assumed to have a constant 
strength Q and a time dependence exp ( -  iw7) with w positive, this factor being 
suppressed throughout. Then the combination of mass and momentum conservation 
equations gives 

(2.1) 

where g is the value of the gravitational acceleration. This equation takes simple 
account of gravity, in that internal gravity waves are precluded in this model for 
which the Brunt-Vliislilli frequency vanishes. 

The linearized boundary conditions at  y3 = 0 can be derived from the assumption 
that pressure on the surface is constant and the fact that particles in the free surface 
always remain in it. These conditions imply that 

ma 9 all. 
c$? Gay3 

V2$+-$--- = QS(y,, y3+h) in y3 < 0, 

a$ 
aY3 

-w2$+g- = 0 at y3 = 0. 

At large depth, we impose a radiation condition to constrain disturbances to be either 
bounded or outgoing. Then we make the change of variables defined by 

where p(y3) = p, exp (-gy,/c$?) is the mean density, pw being its value at the 
undisturbed surface. The physical meaning of this transformation will be discussed 
later, but it reduces (2.1) and (2.2) to 

V*$+ha$ = 6(yo,y3+h) iny, < 0, (2.4) 

and (2w:-w2)$+g- a+ = 0 at y, = 0, 
aY3 

(2.5) 

where h2 = (w2-w:)/c$?, and w,, = g/2c, is the acoustical cutoff frequency for the 
ocean. The source strength Q has been chosen so that the coefficient of the Dirac delta 
function here is unity. 

Take Fourier transforms in the horizontal coordinates yo, so that 

and 
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Then (2.4) and (2.5) imply that 

where y2 = A2-kz. In  order to satisfy conditions at y3+- 00, we must take as 
so1ut)ion of (2.6) 

1 
2iy 

4 = A e-iYY3 + - eiylY3fhl 

where A is a constant and y is chosen so that when real it is positive, and when y 
is purely imaginary Im (y) is positive. From (2.7) we deduce 

- 1  2w;--w2+igy . 
A = -  elyh. 

2iy 2w;--02-igy 

The field $&) may now be calculated by inverse Fourier transforms, which yield 

We denote these three terms respectively by $,, 4, and $3; 4, is the direct radiation 
from the source while 4, and $3 represent the field due to boundary reflection and 
gravity effects. The first two can be evaluated in a straightforward manner with the 
results 

where R, = (yz + (yI + h),)t and R, = (yz + (y3 - h),):. To find the third term, we 
convert the integral into polar coordinates according to k, = k cos a and k, = k sin a, 

where T = IyaI, cr = arctg (y2/yl) and y2 = A 2 -  k2. 
The a-integral can be evaluated explicitly as a Bessel function of zero order, J,(z), 

and since we are concerned here with the propagating waves, it is desirable to express 
the result in terms of the Hankel function. So we have 

(2.10) 

where Hp)(z )  is the first-kind Hankel function of zeroth order. The integration path 
of (2.10) is the real k-axis indented above all singularities on the negative half axis 
and below all on the positive half. 

For convenience, we suppose for the time being that o>w0=g/2c,. The 
integrand of (2.10) then has real singularities only, two poles k = & d / g  and three 
branch points k = + A  and k = 0. The branch cuts from k = + A  can be determined 
by the specification of y, which guarantees that contributions to $, for large negative 
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y3 are bounded (for y pure imaginary) or represent outgoing waves (for y real). It 
turns out that the cut from + A  must go to infinity above the real axis and that from 
- A  to infinity below the real axis. The branch cut associated with the Hankel 
function can be drawn from k = 0 to infinity along the negative imaginary axis. 

All these considerations about the integration path and branch cuts are made so 
that the radiation condition is satisfied. This can be understood by Lighthill’s 
procedure (1978) that introduces an imaginary part into the frequency ; we consider 
w to be complex, w+is say, E being small and positive and later allowed to vanish. 
So, in Lighthill’s scheme, the harmonic source strength increases exponentially with 
time like exp (M), from zero at 7 = - 00 to its present level. Since the linear response 
to the source must share the source time dependence, the amplitude of the response 
will also grow exponentially in step with the source strength. Hence the free waves 
which we wish to exclude are easily recognized on account of their negligible 
amplitude compared with the ever-growing source-generated fields. Accordingly we 
seek only the solutions proportional to exp (M). 

Mathematically the substitution of w + is for w moves singularities, both poles and 
branch points, on the negative real k-axis into the third quadrant, which is equivalent 
to the indenting of the integration path above the singularities. Similarly it moves 
singularities on the positive real axis into the first quadrant, an equivalence to 
indentation of the integration path below the singularities. Since the branch cuts 
cannot cross the integration path on which the integrand concerned is required to 
be analytic, the only way of drawing the cuts is then to let the one from + A  go to 
infinity above the real axis and that from - A  go to infinity below the axis, as 
illustrated in figure 1 where the loci of poles and the indented integration path are 
also schematically shown. 

Now, we deform the integration path onto a straight line just above the whole real 
axis (except at the branch point k = + A  where the new path is still indented into 
a semi-circle). In  doing so, the pole k = w2/g is crossed. Hence q53 becomes the sum 
of the residue contribution at the pole and the integral along the new path, which 
we respectively denote by 4s and #a, 

(2.11) 

and 4, is still given by (2.10) with the newly defined integration path. It can be 
calculated asymptotically by change of variables, the details of which are given in 
Appendix A. It is found there that 

(2.12) 

where anE(0)/asn is the nth-order derivative of E(s)  at s = 0 with E(s)  defined by 

E(s)  = [s2-2gAs[igA+ (24-w2) cos8,]+[2w~-w2+igh C O S ~ , ] ~ ] - - ~  (2.13) 

where e, = a r c t g [ y ] .  Y3-h 

It should be pointed out that we have assumed w > wo in the foregoing calculations. 
However it is easy to show that this restriction may be removed, because the solution 
for w < w,, has exactly the same expressions as those obtained above. Therefore, the 
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FIQURE 1.  The loci of poles, branch cuts and the indented integration path 
in the complex k-plane. 

complete solution of the problem (2.4) and (2.5) is given by (2.9), (2.11) and (2.12), 
asymptotically as 

where the second term is the combination of q5, and the first term (n = 0) in the series 
of (2.12). We rewrite them in this way because the combined term gives the far field 
(hR,+ 00) approximation for the reflected acoustic waves. 

Both sound and surface waves are excited by the point source ; the first three terms 
describe sound waves and the last represents gravity surface waves which propagate 
horizontally. Due to gravitational effects, sound waves are cut off below the frequency 
wo, where the wavenumber A becomes purely imaginary , and they are dispersive; 
their phase speed varies very rapidly with frequency from infinity at w = w,, to the 
constant value c, as w increases. But these interactive features are confined to the 
extremely low-frequency region near oo = 9/2c, x 0.003 rad/s so that we may ignore 
them for frequencies of practical interest. 

Surface waves are almost unaffected by fluid compressibility. The dispersion 
relation of surface waves, determined by letting the denominator of the integrand 
of (2.10) vanish, is identical to that of classical water-wave theory; surface waves 
propagate at  exactly the same speed as they did in incompressible flow. This is 
expected because the response field near the surface actually satisfies V2$ = 0, the 
governing equation for incompressible flow, from (2.1) to (2.2). 

However, though surface waves are unaware of fluid compressibility, their presence 
on the sea surface can greatly influence the compressive waves; they can drastically 
augment sound radiation from the source. This is readily seen from our solution. In 
the far field, where AR, % 1 ,  the sound field may be approximated by the first two 
terms of (2.14); the first is the field radiated directly from the source and the second 
the reflection from the ocean surface, the reflection coefficient being 

(2.15) 

A pressure-release surface has a reflection coefficient of - 1, but here, though the 
actual ocean surface still remains pressure free, its reflective property is a function 
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of frequency as well as observation position. This is because the coherent gravity 
waves on the surface interfere with the otherwise specular reflection. Of course, 
C, = - 1 in the limiting case of vanishing gravity, and when the observation point 
approaches the surface, cost), x 0; sound waves cannot travel parallel to a linearly 
disturbed, passive surface without suffering severe cancellation. C, also reduces to 
- 1 at high frequencies where sound and gravity waves are uncoupled. The fact that 
a pressure-release surface can be regarded as having a locally reacting surface 
impedance when gravitational effects are considered has also been recently recognized 
by Finnveden (1987). 

3. Energetics 
The energy relation in our model can be derived in the same way as in gravity-free 

situations (Dowling & Ffowcs Williams 1983). The linearized governing equation for 

(3.1) 
our problem is 1 a2+ 9 a$ V2$ 0 

c: a72 c: ay3 
When this is multiplied by p ( y , ) a $ / a r ,  and the terms re-arranged, the equation 
describing the energy conservation is obtained as 

a 
- ( e , + e , ) + V . Z =  a7 0, 

where 

and 

It is apparent that for a steady wave field in which Z is solenoidal the velocity 
potential $ decays exponentially with depth because of the exponential increase of 
p(y3 ) .  This property also manifests itself in the governing equation (3.1) by the 
first-order derivative term - g/c:(a$/ay,) which results in an exponentially decaying 
solution. 

In  the previous section, we have introduced a new variable 4, having the same 
dimension as velocity potential. The physical meaning of it becomes clear once its 
definition (2.3) is substituted into (3.2), which yields 

where p3 is a unit vector in the vertically upward direction. Since qi and aqi/ar are 
always in out of phase, the last term on the right-hand side integrates to zero and 
makes no contribution to the mean wave power output. Hence we have 

where the symbol ( ) stands for the mean value over time. 
Equation (3.4) is a familiar formula in acoustics. Evidently the introduction of q5 

by (2.3) implies an acoustic analogy with our stratified density problem; the real 
velocity potential $ is analogous to that in a uniform mean density situation with 
an equivalent potential function qi. From (3.3), it  is also clear that the response 
velocity field consists of two parts. The first one, characterized by the analogous 
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velocity V$, contains all wave motions. The second part is simply the gravitational 
tendency to induce vertical motions ; in our constant-entropy model of the ocean this 
is a conservative process. 

For harmonic excitations, (3.4) can be simplified to 

(0 = $P, Im ($*V$), (3.5) 

where the star implies complex conjugate and Im ( z )  denotes the imaginary part of z. 
Now we calculate the wave power radiated by the point source by integrating (3.5), 
together with the results obtained in the previous section, over a large hemisphere 
centred at the origin. By letting its radius tend to infinity, we can use the far-field 
approximation to evaluate the sound power. The far-field sound is, from (2.14), 

-1 eiAR . ihA cosO+cr e-ihAcos8] as R + ~ ,  
$sound = - [e 4nR 

where R = lyl, cose = y,/R and C, is defined by (2.15). On substituting (3.6) into (3.5) 
and integrating over a hemisphere of radius R, the acoustic power, denoted by W,, 

2 4  - w2 + igA6 e2ihA5 

2 4  - w2 - igA[ 

is found to  be 
W ,  = * 1: [ 1 -Re ( 

8~ (3.7) 

where Re ( 2 )  is the real part of z. 
The surface wave power can be similarly calculated from the surface wave field 

(2.11). A direct substitution into (3.5) and a recognition of the Wronskian (Watson 
1966) lead to the simple expression 

It follows, by integrating this over a half infinite cylindrical surface whose axis co- 
incides with the negative y,-axis, that the surface wave power from the point source is 

wp,(w2- 264) 0 2  - 2w' 

49 9 
w, = exp( -2h 

The sound power (3.7) and surface wave power (3.8) can also be obtained by the 
method suggested by Levine (1980), which starts by multiplying the basic equation 
(2.4) by @p, $* and taking the imaginary part of the result, so that 

Y @ P ,  Im ($*V$)l = @P, &hz, Y3+ h) Im ($*)- (3-9) 

The term in the bracket can be recognized as (3.5), the wave energy flux. So, 
integrating (3.9) over the whole water body and applying the divergence theorem, 
we find the total power delivered to infinity is 

Wtotal = $P, Im [$*(O,O,  --h)I. 
By using (2.8), it  is easy to show that 

The first term is exactly the same as (3.7), the sound power. At first glance, the second 
integral seems purely real, which would suggest zero surface wave power, but this 
is certainly not the case. The integration path must be indented below the pole at 
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k = w2/g to comply with the radiation condition. The imaginary part of this integral 
is 2x times half of the residue at  k = w2/g,  which is exactly (3.8), as is expected. 

Now, we return to the calculation of acoustic power. The calculation can be 
facilitated by expressing (3.7) in the form 

where 

(d - 2 ~ : )  F(h) -9- ap(h))] (3.10) ah 
sin 2hh w2 - 2 4  

A 
w, = - [ 1 +=- 

8x 

cos(2h5) 
2 2d5. I 0 (w2-22w32+g 5 F(h) = 

In  Appendix B, it is found that 

2w: - w2 
(w2 - 2 4 )  F(h)  -&- ah =:exp(2h ) 

+ 2iAh)l when h += 0, 
1 2w: - 0 2  

-- Im [$ (2h 
9 9 

when h = 0, 
1 

= - arctg ( ) 
9 w2 - 20: 

with E,(z) being the exponential integral. Therefore the acoustic power is 

sin (2hA) -2 -  w2 - 2 4  exp (2h 7) 
9h 

w, = - 

x (n + Im El (2h 2w:-"2 + 2ihh))l 
9 

arctg gh ) whenh = O .  
41c u2 - 2 4  

when h ?= 0, (3.11) 

(3.12) 

These results are illustrated in figure 2, where the sound power, normalized by 
ohpw/8x, the power that would be radiated by the source in an infinite space, is 
plotted as a function of the dimensionless source position h / c W  for some frequencies. 
Obviously the curves approach the vanishing gravity limit as frequency tends to 
infinity ; high-frequency sound is decoupled from surface waves. 

An intriguing influence of gravity on low-frequency sound is also clear in figure 2 ; 
the total sound power radiated by the source can be vanishingly small when the source 
is located at a particular non-zero depth in the water, a striking feature that is never 
true of the gravity-& problem. This phenomenon can be explained by the change 
of reflective properties of the sea surface in this uniform gravity model, which 
provides an additional reflected field that interferes destructively with the original. 
The non-zero depth h,, at which the source radiates negligible sound, can be 
determined by letting aW,/ah = 0 and W, x 0, which leads to the simple equation 

hg 2Ah, cos (2Ah,) - sin (2Ah,) sin (2Ah,) 
= 1. 

2 4  - + 2Ah, 

This is shown in figure 3. The depth h, has been normalized by the acoustic 
wavelength c,/w and plotted versus the dimensionless frequency w/wo.  It can be seen 
that this effect is most important at low frequencies. As o decreases, h, increases until 
w2 = 2 4 .  Below this value h, does not exist because the ocean surface in that case 
becomes acoustically rigid ; the image field is then essentially constructive. 

The ratio of (3.1 1) to (3.8), that is, the ratio of acoustic power to surface-wave power, 
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Source position hw/c,  

FIQURE 2. Surface amplification of sound power from a harmonic point source. The sound power 
is normalized by the power of the same source in an infinite space. 

0 1 2 3 

1% (4%) 
FIQURE 3. The particular depth at which the source can radiate only a negligible sound. 

10 - 

- 

- 20 I I I 

-3.0 -2.5 - 2.0 -1.5 -1.0 

Source position log (hwlc,) 

FIGURE 4. The power ratio of sound to surface waves from a harmonic point source. The downwards 
spikes indicate that the source is located at the depth h,. 
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is shown in figure 4 as a function of the reduced source position for some values of 
w/wo.  Apparently, deep water sources are much more efficient in sound radiation than 
in surface-wave production, and more energy is assigned to surface waves as the 
source approaches the surface. The downwards spikes of the curves correspond to the 
situations where the source is located at h,. The acoustic power in those cases is 
negligibly small. 

4. Waves generated by surface pressure fluctuations 
The most important sources of surface waves are winds and atmospheric pressure 

fluctuations moving across the ocean surface (Phillips 1977). Iaakvich & Kur'yanov 
(1970) have interpreted empirical evidence of surface waves to suggest that the 
wind-induced pressure fluctuations may also be the cause of the underwater noise 
within the frequency range 1&5OHz. Here we demonstrate through a definite 
theoretical modelling that this mechanism can also generate a considerable low- 
frequency sound below 10 Hz. At low frequencies, the surface wavelength is usually 
much bigger than the wave height and the slope of the ocean-surface elevation is 
usually very small. Hence the surface pressure fluctuations can be effectively regarded 
as an external distribution of force acting on the mean position of the ocean surface, 
that is, ys = 0. In this view, the boundary condition at ys = 0 becomes, if we let 
&(y,, 7 )  be the surface pressure distribution, 

which, together with the governing equation (3.1) and the radiation condition at 
ys+- 00, can be used to determine +. By making use of the transformation (2.3) and 
following the procedure of $2,  the far-field sound can be derived as 

from which the acoustic energy flux in the radial direction can be derived as 

where we have denoted wx,/c,IxI by 6, and the w-integral has been dropped so that 
I, is the value of the energy flux in a unit frequency band. The function Q(y:, w ) ,  y: 
being the space separation, is defined as the Fourier transform with respect to the 
time delay of the cross-correlation of the source function &(y,, 7) .  

Pressure fluctuations on the ocean surface have been a research subject in 
ocean-wave studies for a long time due to their importance in producing surface 
waves. Though the detailed structure of their distribution is not known and a precise 
description of them is not possible, a reasonably good representation can be 
extrapolated from measurements. Snyder et al. (1981) have suggested that 

(4.2) 

where K~ and K~ are, respectively, the downwind and crosswind coherence and k, is 
the downwind wavenumber. We suppose that this source extends over a linear 
dimension L that is much bigger than the coherence scales, so that the source can 
be regarded as being homogeneously distributed within I y,I < L and vanishing 

Q(Y:,~) = A ( o )  ~ X P [ - ( ( K ~ Y : ) ~ + ( K ~ Y ; ) ' ) ~ I  ~ X P  (-&Y:), 
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outside it. Hence, substituting (4.2) into (4.1) and carrying out the yu-integration in 
the region Iyal < L, we find 

The yi-integral can be carried out explicitly to give 

Since f/K, is basically of the same order as the wind Mach number U l c ,  4 1, the 
square bracket in this is effectively 1 + k i / K ; .  The sound power can then be evaluated 
by integrating I, over a hemisphere centred at the origin, which yields 

w, = 02L2A(w) [ 1 +$I-!. 
12'ITCk pw K1 K2 

(4.4) 

The surface wave power can be derived in the same way from the surface potential 

x w2&(yu, 7 )  eiw(t-7)d2y, d7 dw, 

which yields the surface wave energy flux in unit frequency band as 

Obviously the double integration in this result is identical to that in (4.1) provided 
6, is now replaced by w2xa/glxa:,l. Hence we can make use of the result (4.3) to evaluate 
I,. By integrating the result over a half infinite cylindrical surface of radius L and 
neglecting terms smaller by a factor g / o U ,  we find the surface wave power as 

which, together with (4.4), yields the power ratio 

where 

This result reveals the linear relation between sound and surface wave power 
output from the same source &(y,, 7) .  The power ratio is determined by the coherences 
of their common source. If we assume that ko, K~ and K~ are all of the same order, 
,U simply reduces to 27c and 1 + k:/K: = 2, so that the right-hand side of (4.5) can be 
seen to be essentially independent of frequency if we further assume that the 
downwind coherence K~ is proportional to w /  U .  The sound power in this case increases 
simply in proportion to the surface wave power. If the surface wave activity increases 
due to the increase of the source strength, the underwater sound also increases by 
the same amount. The acoustic field is not dependent on surface waves in any 
nonlinear way, as in the view that considers surface waves as the source of the sound. 
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In what follows, we justify this conclusion by comparing the calculated power ratio 
(4.5) with that measured in the natural ocean. 

Sound in the ocean has been measured on many occasions, but the measurements 
are usually of pressure spectra. Since we choose to work with the wave power instead 
of pressure spectra, it  is necessary to first deduce the acoustic power output from those 
measured pressure spectra. In the ocean, measurements are usually made in the water 
right below a wind field of large dimension. We choose a cylindrical surface of radius 
L which just encloses the source region so that the total acoustic power is given by 
the sum of the power adsorbed by the bottom and that crossing the cylindrical 
surface. 

There is experimental evidence that sea-bottom reflection is significant at low 
frequencies; the pressure reflection coefficient, which we denote by /3, is close to unity 
(Urick 1967). Letting P(w)  be the total pressure spectrum, the spectrum of the 
incident pressure can then be written as f ' (w) / (  1 +/3),, which is actually the incident 
wave energy flux if it  is divided by cwpw. Since the energy loss through unit area of 
the sea floor is 1-$ times the incident energy flux, the total power loss on the 
bottom, which is denoted by W,, is 

where s is the sea bottom surface of radius L. Since this area is right below the source 
region, it is reasonable to assume that P(w) is uniform over it, provided L is relatively 
large in comparison to the acoustic wavelength, which is the case in the natural ocean. 
In general, B is a function of both frequency and the angle of incidence, but here we 
simply regard it as the mean value over all possible angles. In this case, W, reduces to 

The sound power crossing the chosen cylindrical surface can be evaluated by 
integrating the energy flux, which depends only on the vertical coordinate because 
of the symmetrical geometry. A t  frequency o the value of the energy flux is given 
by the pressure spectrum divided by cwpw and multiplied by a directional factor 
which accounts for the fact that energy rays received on the cylindrical surface are 
not necessarily perpendicular to it. We will not consider the complicated details of 
this factor, but simply take it as unity. This approximation is justifiable because the 
source region is quite extensive, so that the angle between the impinging energy ray 
and the normal to the control surface is very small for most of the main contributing 
energy rays that come from the direct and the first reflected radiation from distant 
sources. Hence the sound power crossing the cylindrical surface, which we denote by 
W,, is approximately 

W, = 2nL N f ( y 3 ) d y 3 ,  (4.7) 
-H 'WPW 

where H is the depth of the ocean. In this we have taken account of the variation 
of sound pressure with ocean depth by expressing the pressure spectrum at the depth 
( -y3) by P(w)f(y3), the spectrum on the bottom modified by a factor f (y3) that can 
be derived from experiments. In  the low-frequency region we find from Morris' (1978) 
measurements 

where A, is the surface wavelength and y3 and Hare measured in metres. The function 
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FIGURE 5. The power ratio of sound to surface waves driven by surface pressure fluctuations on 
the ocean surface. The theory (4.5) is indicated by the dashed line, and the two sets of experimental 
data were measured respectively 300 m (circles) and 1200 m (triangles) below the ocean surface. 

f(y3) vanishes in the region y3 > -A ,  to comply with the fact that no sound wave 
can propagate along a pressure-release surface. On substituting this into (4.7) we find 

(4.8) 
that 

P(0)  
cw Pw 

W, = 2 x L H - B ( H ) ,  

where 
3.26 x 103 

[exp (3.07 x 10-4H) - 11. 
H 

B(H) = 

Now the total acoustic power output WL can be expressed in terms of P(w) by the 
addition of (4.6) and (4.8): 

cw Pw 
(4.9) 

The surface wave power Wi in the ocean can be calculated directly from the surface 
wave spectrum @ ( w ) ,  which has been measured and modelled extensively in ocean 
wave studies. Surface wave energy has a density of the form pw g@(o)  per unit length 
per unit frequency band, and propagates at the group velocity g / 2 w .  The product 
of the two gives the energy flux, and the surface wave power can be derived as 

which, together with (4.9), gives the sound to surface-wave power ratio in the ocean 
in terms of sound pressure spectrum and surface wave spectrum as 

(4.10) 

Now the theoretically calculated power ratio (4.5) can be compared with this result, 
which is illustrated in figure 5. The measured ratio is plotted according to (4.10) by 
making use of the measurements of P(w) from Nichols (1981) and a surface wave 
spectrum derived by Phillips (1985), namely, @ ( w )  = au, g/w4, where 01 is a dimen- 
sionless constant determined by experimental data, equal to 0.01 x 64.01 x 11, and 
u* is the friction velocity that is approximately related to the wind speed U ,  measured 
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FIGWE 6. The deformation of the integration path r onto the steepest descent path (A 3). 

at 10 metres above the water surface, by U = 11 .O x u,{2.0- log u*} (Phillips 1977). 
In plotting (4.10), the second term in the square bracket has been neglected (because 
1 -/3 is very small) as being much smaller than the first term for comparable L and 
H. We take the uniform wind speed U as 20 knots, corresponding to the sea state 
when P(o) was measured. The Phillips spectrum in this case is valid in the frequency 
range of about 0.1-13 Hz, within which our comparison is made. The downwind 
coherence K~ has been taken as being proportional to w / U  with a proportionality 
constant of 0.1 according to Snyder et al. (1981), their estimate of which is 0.1 to 0.4. 
Evidently, the theory, which is represented by the dashed line in figure 5 ,  is in good 
agreement with the measured data in both structure and order of magnitude. 

5. Conclusions 
Sound and surface waves radiated from a defined source have been studied in detail. 

In  this particular model, which takes account of both gravitational effects and fluid 
compressibility, sound and surface waves co-exist. Surface waves are unmodified by 
fluid compressibility ; their generation and propagation show the same character as 
in incompressible flow. Sound radiation, however, is greatly augmented, particularly 
at  low frequencies, by gravity waves which change the reflection coefficient of the 
sea surface from - 1 in gravity-free situations to a function of both frequency and 
observation angle. This reflection coefficient limits to -1 as frequency tends to 
infinity, but in the low-frequency region it differs from - 1 considerably. 

Energy calculations show that the source induces, apart from the ordinary wave 
motions, a background oscillation which has no influence on wave power output. The 
wave power from the point source is evaluated explicitly. The way in which the source 
assigns its energy between sound and surface waves shows that deep-water sources 
are more efficient in sound generation than in surface-wave production, while sources 
adjacent to the surface radiate more energy to surface waves than to sound. An 
unusual phenomenon has been found in this model; a submerged source may radiate 
a negligible sound at a particular non-zero depth. This non-zero depth has been found 
to have significant values, again, in the low-frequency region. 

Particular attention has been paid to the situation where the sources are pressure 
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fluctuations moving across the ocean surface. The calculated energy ratio of sound 
to surface waves has been compared with that from measurements, which reveals 
good consistency. It is then concluded that the direct radiations from sources that 
induced surface waves may contribute an appreciable amount to the observed 
low-frequency ocean noise. 

The author would like to thank his supervisor, Professor ,J. E. Ffowcs Williams for 
suggesting the problem and for his encouragement. The financial support from the 
University of Cambridge (Chancellor’s Fund) is also acknowledged. 

Appendix A 
specified by (2.10). For convenience, 

we transfer the Hankel function into a Bessel function and further express the Bessel 
function as an integral. This leads to 

In this Appendix, we calculate the integral 

By a change of variables k = h sinp and by the use of the spherical coordinate 
system R, and 6,, (A 1) can be rewritten as 

The integration path r i n  the complex P-plane is (0 + i0) + (in + i0) -, ($ -ioo), which 
is determined by both the change of variables, k = h sinp, and the specification of y.  
Now, introduce a symmetrical transformation 

cos p’ = - cos /3 cos 6, - sin P sin 6, cos a 

cos p = - cos p’ cos 6, - sin p’ sin 6, cos a’ 

to convert the integral (A 2) from the (a,P)-space to (a’,p’)-space. For such a 
symmetrical transformation, it can be shown that the Jacobian is - 1. Therefore 

da’ dp’ ih(02--0i) Jr, J’ exp (ihR, cos p’} sin p’ 
2 4  - o2 + igh cos p’ cos 6, + igh sin p’ sin 6, cos a’ $a= 2x2 

where the integration path r in the p’-plane correspondingly becomes 
(O+iO)+( -$+iO)+(-ix+im). The integration with respect to a’ can be carried 
out explicitly to give 

h(o2 - 2 4 )  
dp’ . s i n p  exp{iAR, cospI} 

Now, we deform the path r onto the steepest descent path that can be expressed 
by the parametric equation 

cosp’ = 1 +is, (A 3) 

where s is a real variable varying from zero to infinity as r goes from zero to 
-+x+im. This path is schematically shown in figure 6. 

It should be mentioned that, when deforming the path r onto (A 3), one needs 
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to check if any poles are crossed. This problem does not arise in our calculations since 
we have already suitably dealt with the poles in deriving #a in $2, so that all poles 
are outside the area enclosed by r" and (A 3). Therefore, we eventually have 

with E(s)  given by (2.13). The result (2.12) then follows directly from this by 
expanding E(s) at s = 0 and integrating the result term by term; the result is not 
a convergent series, but is asymptotic as R2+ 00, with an error smaller than any 
inverse power of R,. 

Appendix B 
From (3.10), we have 

whose first- and second-order derivatives with respect to h are, respectively, 

A -2gsin(2hf) 
0 (u2-2wo) 2 z +  9 2 f 2df9 

and 
a2F(h) 2 sin (2hh) 4 ( ~ ~ - 2 w : ) ~  

(B 3) -- + - 
ahz -k12 s2 

Equations (B 1 )  and (B 3 )  can be combined to form a second-order ordinary 
differential equation, with the boundary conditions at h = 0 determined by (B 1 )  and 
(B 2 ) ,  namely, 

-- 4(wz-220i)2F(h) = 2 sin (2hh) 
ahz g2 - h g z  ' 

F(0)  = 1 arctg gh 
g(w2- 2w3 w2-24 '  

and 
aF 
x(0) = 0. 

It is a straightforward way to solve this problem by the method of Green functions. 
The result is 

gA exp(2h 20: - w2 

) arctg 
wz - 2w: 

F(h) = 

dh'] . 2wz-wz sin (2hh') 
) h' 

+ J: exp (21h - h ' l o  
9 

Therefore we have 

(w2-2wi) 
w2 - 20: exp (2h 2w'i "7 

+A J" sin (2hh') 

9 0 h' 
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When h = 0 the h’-integral is zero and when h $. 0 we have 

0 2  - 20; +2iAh)], 
9 

where E,(z) is the exponential integral. This immediately gives the result quoted 
in $3. 
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